Understanding Interdependent Infrastructure Systems: Modeling Insights and Practical Challenges

Leonardo Dueñas-Osorio

Assistant Professor

Department of Civil and Environmental Engineering

Rice University

Network Analysis: Complexity of Interdependence

2012 Earthquake Engineering Research Institute (EERI) Annual Meeting
and National Earthquake Conference

Memphis, Tennessee April 12, 2012

Motivation (1/3)

 Contemporary complex infrastructure systems

Essential to support modern society's functions

 Large scale and high exposure systems

 Reached accelerated phase of aging and deterioration

 Increased interdependence for optimized operation

Motivation (2/3)

- Research on interdependent infrastructure systems
 - Inoperability input-output Leontief methods
 - Agent-based modeling
 - Data-based methods
 - Network and complexity-theory approaches

- Before 1990
- 1990 trhough 1994
- 1195 through 1999
- **2000 trough 2004**
- 2005 and beyond

Motivation (3/3)

Simulation-based network modeling approach

 Hazard and Action on Components (HAC)

- Systemic Damage Propagation (SDP)
- Cascading Failures
 Assessment (CFA)
- Interdependence Damage Propagation (IDP)
- Systemic Performance Assessment (SPA)

Istr: Interdependence Strength

Presentation Outline

1. Research insights from network modeling approaches of infrastructure systems

2. Recent field observations of interdependence

3. Concluding remarks and future work

1. Insights from Modeling (1/8)

A set of realistic yet streamlined systems

Power System S_1

 $S_1 \rightarrow S_2$ Power effects on Water

 $S_2 \rightarrow S_1$ Water effects on Power

Water Network S_2

1. Insights from Modeling (2/8)

Water Connectivity Loss from interdependence with power

1. Insights from Modeling (3/8)

Water Connectivity Loss from interdependence with power

$$S_1 \rightarrow S_2$$

- Coupling contributes significantly to water fragility
- Interdependence control must be activated early

1. Insights from Modeling (4/8)

Added Connectivity Loss C_L from interdependencies

- Power system is less sensitive to coupling
- Interdependencies manifest at select hazard levels

1. Insights from Modeling (5/8)

Effects of capacity increase of congested elements on C_L

$$S_1 \rightarrow S_2$$

- Local capacity increase to manage intra- and interdependent cascades is insufficient to control C_L

1. Insights from Modeling (6/8)

Effects of interface and network topology

- Optimal interfaces exhibit high D and low Istr
- Strengthen power nodes and water links

1. Insights from Modeling (7/8)

Assess the effects of probabilistic seismic hazards

1. Insights from Modeling (8/8)

Risk-level effects of interdependence

 Interdependence effects persist after convolution of fragility with seismic hazards

2. Recent Field Observations (1/8)

Geographical and seismological context of Chile 2010 Earthquake

2. Recent Field Observations (2/8)

Restoration time series in the Bio-Bio Region VIII

2. Recent Field Observations (3/8)

Sample of strong cross-correlation (coupling strength)

2. Recent Field Observations (4/8)

Sample of weak cross-correlation (coupling strength)

2. Recent Field Observations (5/8)

Water and power systems in Concepcion, Chile

Power

2. Recent Field Observations (6/8)

Fragility point validation

2. Recent Field Observations (7/8)

Current initiatives for infrastructure system management

VULNERABILITY OF INTERCONNECTED INFRASTRUCTURE A case of EU gas and electricity networks

K. Poljanšek, F. Bono, E. Gutiérrez

2. Recent Field Observations (8/8)

- Main interdependent effects on power systems
 - **Disrupted** transportation systems
 - Impaired public telecommunication networks
 - Outdated SCADA signals
 - **Insufficient emergency** power at key locations

Rudnick et al. 2011

3. Conclusions and Future Work

- Interdependencies are significant at specific ranges of hazard intensities and tend to quickly propagate main effects
- Infrastructure interfaces that promote coordination and prevent propagation are denser and weaker than current designs
- Time-series analyses of restoration curves enable coupling strength quantification and interdependence model validations
- Most salient interdependence effects are between power, telecommunications, and transportation systems.
- Expand analyses of interdependence effects to system resilience assessment
- Prioritize critical components to achieve target multi-system performance levels

Thank you!

Support from:

Mid-America Earthquake (MAE) Center

National Science Foundation

Department of Homeland Security of the City of Houston

Shell Center for Sustainability

Technical Council on Lifeline Earthquake Engineering (TCLEE)

Rice University

leonardo.duenas-osorio@rice.edu