

Impacts on Electricity Supply from the 2010 Chilean Earthquake

Araneda, Rudnick, Mocarquer and Miquel IEEE Powercon Oct 2010

Chilean Codes include strict seismic standards (IEEE 693) for all electricity infrastructure

February 27, 2010 an 8.8 Richter scale earthquake hit the central part of Chile

Electricity Supply Impacts Generation

- Immediate Loss of 4,522 MW
- ▶ 693 MW of Generation from 16 plants required extended time for repair (6.1% of total installed capacity)

Electricity Supply Impacts

Operations

- Communication systems severely impacted
- Ten year old SCADA system determined inadequate for the event
- Subsequent global blackout one week later caused by protection control cable damaged in the original quake

New Madrid Plant Seismic Considerations

- Unit 1 was designed to conform to the 1967 Uniform Building Code for a Zone 3 seismic area
- Unit 2 was designed to conform to the 1970 Uniform Building Code for a Zone 3 seismic area
- Static design earthquake forces were determined in accordance with the Uniform Building Code for Zone 3

Earthquake Probabilities for New Madrid Seismic Zone 30 year Probability Richter Scale Turbine 6.3 90% Trip Turbine /Gen 7.1 67% Damage 7.6 25% Structural Damage 8.3 3% Total Loss Associated Electric Cooperative, Inc.

Estimated AECI Long-Term Generation Loss Following Magnitude 7.0 Quake

Base Load Generation Loss
New Madrid

Intermediate Generation Loss
St Francis and Dell

Peaking Generation Loss
Essex

Total Generation Loss
2281 MW

Seismic Design *Considerations* for Electric Facilities

- IEEE 693 Seismic Qualification Standard (69kV and above)
- ASCE Structure Design Guide (MOP 113)
- ▶ ASCE/SEI 7-10 for substation buildings

Seismic Design *Requirements* for Electric Facilities

- Nuclear Regulatory Commission Approval
- ▶ Rural Utilities Service-Bulletin 1724E-300
- ▶ PUC- None
- ▶ Federal None

AECI Facilities Involved with 2011 NLE

- New Madrid Plant
- St. Francis Plant
- Dell Plant
- Essex Plant
- Headquarters

CONCLUSIONS

- Known impacts from prior events can guide preventive measures prioritization for Seismic Designs
- Design Requirements for Electric Facilities are essential to minimize expected earthquake impacts
- Critical Electric Grid facilities may in the future be subject to FERC earthquake measures (Currently do not exist)
- State Public Utility Commission (PUC) requirements may be implemented in the future

